

Water Technology Market Trends & Technology Directions of 2013

Introduction

Jeff Guild Vice President of Business Development & Professional Services

O₂ Environmental & BlueTech Research

O₂ Environmental (Consultancy)

O₂ Technology Assessment Group (TAG)

BlueTech Research

(Intelligence Service)

BlueTech Forum

(Annual Conference)

What we do

Actionable Water Market Intelligence & Strategic Support

BlueTech Research

- BlueTech 6.0 Intelligence Platform
- Innovation, Licensing & Patent Trackers
- Company Reports
- Monthly Intelligence Briefings
- Insight Reports on Markets & Technologies
- Webinars on Hot Topics
- Unlimited Analyst Access

02 & TAG

- Strategic Support
- Commercialization Support
- Acquisitions Pipeline Support
- Investment Due Diligence
- Business Development
- Custom Research
- Market Intelligence

Expert Panelists

Dr. Mike MickleyDesalination Expert

Robert GerardElectro-Separation Expert

Mark Wilf

Membrane Technology,

Filtration and Application Expert

BlueTech® Panelists

Paul O'Callaghan CEO

Jeff Guild
Vice President
Business Development
& Professional Services

Tyler Algeo Senior Technology Research Analyst

Aoife Moloney Water Technology Research Analyst

Agenda

- Introduction to BlueTech Research & O₂ Environmental Technology Assessment Group (Jeff Guild)
- Chairpersons Opening (Paul O'Callaghan)
- Membranes Modules & Applications (Mark Wilf)
- Sludge & Biosolids (Aoife Moloney)
- Opportunities in Electro-Separation Technology (Robert Gerard)
- High Recovery Water Processing (Mike Mickley)
- Water Treatment in the Alberta Oil Sands (Tyler Algeo)

Chairman's Opening

Paul O'Callaghan CEO

Water Technology Market Trends & Technology Directions of 2013

Presented by:

General Market Trends

- Japanese companies move outwards
 - Hitachi, Toshiba, Toray, Swing, SEI, Meiden
 - Flat growth promotes export market focus.
 - Key areas: Unconventional fossil fuels, emerging markets,
 MENA
- Automotive companies moving in....
 - Mahle, Mann + Hummel: Focus on Filtration
- Exit Stage Left
 - Siemensor did they....
 - Ashland selling off water chemicals division
- Other New Entrants
 - Johnson Matthey
 - LG Electronics

Acquisitions 2013

Acquirer	Company	
Hutchison Water	Kinrot Technology Ventures	
Maine Manufacturing LLC	GE Healthcare Laboratory Filter and Membrane Business	
Aker Solutions	Separation Specalists Inc.	
Bilfinger	Johnson Screens	
Paine and Partners	Eurodrip	
Sumitomo	Sutton & East Surrey Water	
Xylem	PIMS Group	
Xylem	MultiTrode	
Siemens Water Technologies Hemodialysis Business Unit	Cantel Medical (through its subsidiary Mar Cor Purification)	
Nijhuis Water Technology	Excellent Ozone Solutions	
Aquatech	Fluid Recovery Services (FRS)	
KKR	South Staffordshire plc.	
Badger Meter, Inc	Aquacue	
Contech Engineered Solutions Imbrium Systems		

Acquirer	Company
Contech Engineered Solutions	Imbrium Systems
World Water Works	Aquanos
Xylem	Pollman Pumpen
Kemira	3F Chimica S.p.A.
Advanced Drainage Systems Inc.	Baysaver Technologies Inc.
United Envirotech	Memstar Pte Ltd.
RWL Water	Unitek
RGF Environmental Group	AFL Industries
Nijhuis Water Technology	H2OK Water and Energy
AEA	Siemens Water Technologies
Produced Water Absorbents	ProSep
Clean Teq Holdings	Phoenix Copper

Investments 2013

Investor	Company
Woongjin Chemical Co.	Porifera
United Envirotech	Memstar
Naesta	Nijhuis Water Technology
True North Venture Partners	Emefcy Bioenergy Systems
CLSA Capital Partners and Kleiner Perkins	Scinor Water
Wells Fargo	Imagine H2O
Low Carbon Innovation Fund, the Angel Co-fund, the LBA EIS Roundtable Syndicate Fund 2012	Syrinix
EIC Ventures and Kennington Ltd	Pasteurization Technology Group
Wheatsheaf Investments, Vantage Point, Capital Partners and Frog Capital	Ostara Nutrient Recovery
TEL Ventures	MIOX Corporation
Liberation Capital	Desalitech
Incitica Ventures II and Malin Venture, Sembcorp Industries	Biowater Technology
International Finance Corporation (IFC), WLR China Energy Infrastrucure Fund LP, Huaneng Invesco, RNK Capital LLC, Gamma Capital Partners	Organica S
USAID	mWater

Some observations on Innovation

Water Pricing is not the roadblock to water innovation

 Innovation is only innovation if it meets a clients need

BlueTech Innovation Tracker Picks

- Disrupt-o-meter™ Picks
 - UV LED

Ceramic Membranes

launched with backing of TNVP

Pain Point Addressed: The need for membranes that are tolerant to the presence of hydrocarbons for use in the oil and gas sector to treat produced water

Other:

Nitrate removal – catalytic reduction

Pain Point Addressed:

Elimination of concentrate waste stream

Pasteurization Technology Group

Wastewater disinfection using waste heat

Pain Point Addressed:

Operational costs for electricity

Recent Insight Reports

- 1. Macrofiltration Technologies for Water and Wastewater Treatment
 - Tail-wind opportunity
- 2. Municipal Wastewater Reuse
- 3. Water Treatment in the Alberta Oil Sands
- 4. Advanced Oxidation Processes: Market & Technology Overview
- **5. Biogas Generation and Utilization:** *Technology Trends & Market Potential*
- 6. Smart Water Meters: Technology Overview & Market Opportunities

Introduction

Market Dynamics

Water Reuse Types

Current Municipal Wastewater

Reuse Rates

Water Reuse Applications

Water Reuse Regulations

Municipal Wastewater Reuse

Technology Opportunities

Technology Trends

Market Trends

Drivers

Barriers to Municipal Wastewater

Reuse

Wastewater Reuse Rates

- Municipal Wastewater Reuse rates vary widely
 - Southern European Countries-3.5%
 - Israel- >80%
 - Australia 16%
 - Singapore- 35%
 - China- 9%
 - USA- 6.5%
 - Texas, Florida and California account for over 85% of the US wastewater reuse capacity
 - and all have water reuse rates over 10%.

% of Total Wastewater Collected That is Reused in the USA

Types of Water Reuse

- Non Potable Reuse
- Potable Reuse
 - Indirect Potable Reuse (IPR)
 - Direct Potable Reuse (DPR)
- Non Potable Reuse by far the most dominant form of water reuse
 - USA-87%
 - Singapore- 89%
 - Europe- >99%

Types of Water Reuse

- Non Potable Reuse more publicly acceptable
- However has higher marginal costs than Indirect Potable Reuse if significant (>30 km) additional distribution is required

Non-Potable Treatment Requirements

- Vary depending on reuse application however generally required:
 - Filtration (membrane filtration or macrofiltration)
 - Disinfection (chlorination or UV disinfection)

California Department of Public Health Title 22
 Regulations the "Industry Standard" across the world

IPR and DPR Treatment Requirements

- Not as well developed as Non Potable Regulations
- Multi- barrier pathogen and trace organic removal treatment trains
- No "Industry Standard" regulations but CDPH have issued draft regulations regarding IPR
 - Stipulate Full Advanced Treatment (FAT)
 - RO Membrane Treatment and Advanced Oxidation Required

Technology Opportunities

- IPR is set for explosive growth
 - Growing public acceptance
 - Lower marginal costs
 - Decreasing number of sites with potential to provide cost effective non potable reuse to nearby end users
- If FAT becomes industry standard then AOP, MF/UF and RO Technologies will dominate technology market
- UV disinfection set to become the disinfection method of choice for IPR and Non- Potable Reuse Projects.
 - Combination with oxidants for AOPs
 - Cost comparable to chlorine in many cases
- Regulatory demands for monitoring will drive growth in demand for real-time sensors

A look forward.... Next years BlueTech Insight Reports & Webinars

BlueTech Webinars

- New Opportunities in Ultrapure Water -Technologies for the Semi-Conductor Industry Jan 2014
- Ammonia Recovery & Ammonia to Energy
 - Feb 2014
- Groundwater Treatment Markets
- Osmotic Power
- Nanotechnology in Desalination
- Ballast Water Treatment
- Deammonification
- High Rate Recovery in Oil and Gas/ Mineral Recovery
- Reverse Osmosis Energy Recovery
- Water Technology Market Trends & Technology directions 2014

Insight Reports

- Shale Oil
- Alternative Energy Desalination
- Coal Bed Methane
- Low Energy Wastewater
- Industrial Water Reuse
- E-Separation
 Technologies
- Zero Liquid Discharge
- Ballast Water Treatment

2013 BlueTech Tracker Patent Trends

BlueTech Licensing – top picks

- Technique for catalytic oxidizing of dissolved matter in water
 - Technion, Israel
- Measurement of Crop Water Use (Evapotranspiration) Over Broad Areas
 - UC Davis, CA
- Method for Copper Recovery from Aqueous Solutions
 - NUS, Singapore
- Phosphate and Arsenate Removal
 - University of Queensland, Australia

DIGEST

STREAMS

TOOLS

EXPLORER

HOME * LICENSE * TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

TOOLS » LICENSING

Technion T

Technion – Israel Institute of Technology

Technion

Research Institute:	Technion - Israel Institute of Technology
Technology Offering:	Technique for catalytic oxidizing of dissolved matter in water
Technology Concept:	Adsorption/catalytic regeneration process for regeneration of absorbing material such as active carbon, as well as treatment of fluids containing undesired contaminants.
Type of Licensing Partner:	Available for Licensing
Uniqueness / Novelty (out of 3):	1/3
Unmet Need in the Market (out of 3):	1/3
Size of Market Opportunity (out of 3):	t 2/3
Website:	http://t3.technion.ac.il/pdf_files/1220775 151.pdf
Contact:	Tzachy Tal
Job Title:	Director of Business Development - Life Sciences & CleanTech
Telephone:	+972.4.829.4856

Latest Licensing

University of Sydney

Reverse Osmosis Subsurface Drip Irrigation Read more

Weizmann Institute of Science

Water Treatment in Aerobic Conditions Read more

Weizmann Institute of Science

Method for Extracting and Upgrading Heavy Oil and Other Heavy Hydrocarbons Read more

Tel Aviv University

Identifying and Measuring Genotoxins in Water Read more

Technion - Israel Institute of Technology

Technique for catalytic oxidizing of dissolved matter in water Read more

Biological brine denitrification Read more

Technion - Israel Institute of Technology

Tel Aviv University

Submerged Arc Plasma for Water purification Read more

Innovation Impact Analysis

Current Paradigm	Aerobic biological wastewater treatment
Current Maret Size	\$10Bn CAPEX & \$20Bn OPEX
Pain Points	Energy Use – North American Wastewater treatment energy use 20 Million MH hours.
Potential for Break- through :	Move from energy consumptive to neutral or net energy positive.
Market Impact	This would have the potential to disrupt an industry worth \$30Bn. It would affect the market for aeration devices, lowers, diffusers, sludge treatment technologies such as dewatering equipment, dewatering chemicals.
Timeline for Impact	Early Adopters are already moving to energy neutral. Time-line to Impact Early Majority section of market: 15 years.

Innovation Impact Analysis

Barriers to Shift	The incumbent infrastructure is entirely built around aerobic wastewater treatment. To change this would require re-investment in capital. It is likely that these technologies will see themselves rolled out in retrofits and new-builds in the developed world initially, followed then with roll-out to the new-build market in the developing economies.
Disruptive / Enabling Technologies	Low Temperature Anaerobic Treatment
	Microbial Fuel Cell / Bioelectrochemical System
	Advanced Primary Treatment
	Sludge Pre-treatment and Anaerobic Digestion
Companies Developing These Technologies	Emefcy, ABR Source, Salsnes, Cambi, OpenCell
Research & Development Activity	Perry McCarthy is leading a group focused AD at Stanford and in Korea. Nancy Love at the University of Michigan received a WERF Award to develop low temperature AD.

Dr. Mark Wilf, O₂ TAG Partner and RO Technology

Membrane technology, filtration and application expert

BlueTech Webinar: Reverse Osmosis Energy Recovery November 13th, 2014

RO & FO Applications

Water Technology Market Expert

- RO/NF:
 - Brackish water desalination
 - Seawater desalination
 - Municipal wastewater reclamation
 - Process water for industrial applications
- FO/PRO:

RO/NF

Membrane Development

- Aromatic polyamide chemistry continues to dominate the RO market with small margin left for future improvement of performance.
- In SWRO applications reduction power requirement is limited by osmotic pressure of the concentrate

Module Development

- Spiral modules configuration continues to dominate the RO market with acceptance of large diameter elements (16")
- Improved feed and permeate spacer materials and increased use of "low fouling" construction components

FO/PRO

Membrane Development

- Potential for very large renewable energy market
- Intensive work on developing effective FO membranes and elements
- Significant challenges ahead

Module Development

- Developing effective module configuration
- Significant challenges ahead

Biogas Generation and Utilization

Aoife Moloney, M.Eng Water Technology Research Analyst

Biogas Generation and Utilization: Technology Trends and Market Potential

www.bluetechresearch.com

USA Municipal WWTP Energy Flow

Key Takeaways

- 1. AD is the principal Sludge to Energy Technology
- Stabilize Sludge and Generates Biogas
- Does not require a dewatered sludge thus reducing energy associated with dewatering

2. ICE Technology dominates the CHP market

Factors which could change this include:

- Underutilization of biogas at smaller plants
- Tightening air regulations

Alternative CHP technologies:

Microturbines or Fuel Cells

Key Takeaways

3. Sludge Pre-treatment Technologies key to unlocking additional energy

Drivers:

- Rising Sludge Disposal Costs
- Increasing Energy Costs
- Tightening Regulations

Technology Advantages:

- Sludge Pasteurization
- Sludge Volume Reduction
- Enhanced Sludge Digestibility & Dewaterability
- Improved Biogas Yields
- Deferred CAPEX on AD due to sludge volume reduction

Key Takeaways

4. Cambi's THP dominating sludge pretreatment market

PARADIGM ANYHOMMENTAL TECHNOLOGISE INC.

FILTERS APPLIED: Sludge Pre-Treatment,

Paradigm Environmental Technologies

READ MORE

SHOWING 10 OF 10 RESULTS

Technology Offering: MicroSludge®

Technology Concept: MicroSludge is a waste activated chemical pre-treatment technology that uses caustic solution to weaken cell membranes followed by a high-pressure cell disruption to lyse the bacterial cells in waste activated sludge. The resulting liquefied WAS is readily converted to biogas in an anaerobic digester.

Siemens Water Technologies

READ MORE

Technology Offering: Cannibal®

Technology Concept: Side-stream bioreactor technology to achieve destruction of sludge produced in secondary biological treatment.

Lysatec

Technology Offering: Baker Process: Lysate-Thickening Centrifuge

Technology Concept: Mechanical cell disruption using a modified centrifuge with a sludge disruption device located at the discharge of the dewatered sludge.

Cambi

Technology Offering: Thermal Hydrolysis Process (THP)

Technology Concept: Sludge Destruction using thermal hydrolysis for pre-treatment prior to anaerobic digestion

Veolia

Technology Offering: BioThelys

Technology Concept: Sludge pre-treatment technology based on thermal hydrolysis.

READ MORE

READ MORE

READ MORE

Chart the selected companies

Chart Companies by Technology \$ Select Chart Type Pie \$

GENERATE CHART

Companies by Technology

Key Takeaways

5. Co-Digestion Proves to be problematic in practice

Advantages:

- Waste management solution for food waste
- Synergistic benefit of sewage sludge digestion process thus increase in biogas yield

Challenges:

- Lack of clarity regarding regulations
- Waste collection methods
- De-packaging and pre-treatment of wastes
- Guaranteed digester capacity into the future

Robert Gerard, O₂ TAG Partner and Aqualogy

Electro-Separation Technology Expert

Electro-Separations

Environmental
Water Technology Market Experts

Robert Gerard

E-Separation processes

Main features of E-Separation:

- Fouling tolerance
- High TDS
- High Recovery

Combination of IX Membranes, Electrodes and Spacers or Resin common for:

Electrodialysis (ED)
Electrodialysis Reversal (EDR)
Electrodeionization (EDI)
Electrodialysis Metathesis (EDM)
Bipolar Electrodialysis (BP ED)
Capacitive Deionization (CDI)

Electro-Separations

Robert Gerard

Cost of various desalination technologies

Electro-Separations

Environmental
Water Technology Market Experts

Robert Gerard

Examples of Hybrid Solutions

Increase overall system recovery

Feed water with high fouling potential

Feed water with high TDS

Dr. Mike Mickley, O₂ TAG Partner and Mickley & Associates

Desalination Expert

BlueTech Webinar: High Rate Recovery in Oil and Gas September 18th, 2014

HIGH RECOVERY WATER PROCESSING

- What is high recovery (HR) processing?
- Why is it important?
- Drivers
 - Source water scarcity, competition, transportation
 - Increasingly stringent wastewater disposal regulations
 - Heightened scrutiny about wastewater sustainability issues
- Original applications versus new applications
- Limiting factor = cost
- Oil and gas applications considered here:
 - Coal bed methane/coal seam gas
 - Gas shale
 - Oil sand
- Water issues include source water and wastewater

HRR Drivers and Technology Needs Are Very Local

Sector	Issue	Driver	Status
CBM (U.S.)	Produced water	Limited disposal options	Limited application of HR; lower TDS produced water; use for livestock; SAR off for irrigation use
CSG (Australia)	Produced water	 'Forced' to go ZLD due to legislation against new evaporation ponds Queensland Gov. Legislation requiring centralized treatment and management of CSG brines AND clean up of existing ponds Limited experience with deep well injection 	HR is a necessity
Marcellus gas shale (U.S.)	Source water and wastewater (flowback and produced water)	 Large water volume need; supplies are in competition with other needs Large scale deep well injection not available in many locations Risk – hauling of large water volumes 	Virtually no evaporative use yet much discussion, research, and anticipation
Gas shale (Australia):	Source water and wastewater (flowback and produced water)	 Severe limitations with water availability Limited experience with deep well injection 	At early stage of development – but HR seen as a need
Oil Sand (Alberta, Canada)	Source water and waste water (for steam for SAGD approach)	 Better boiler feed water quality Stringent regulations 	Accepted application; first ZLD systems installed between 1999 and 2003

High Rate Recovery is coming – its only a matter of time...

- Only solution addressing both source water and wastewater issues is HR processing.
- Unconventional O&G industries are evolving
 regulation and other drivers will change and will favor HR.
- Many companies, major players and new, are developing more efficient and less costly treatment steps and systems in anticipation of this.

Water Treatment in the Alberta Oil Sands

Tyler Algeo Senior Water Technology Research Analyst

In-Situ or Mining Depends on Depth of Oerburden

Bitumen in Alberta Oil Sands

800,000 __

700,000

600.000

500.000

Current Production

Ultimate Recoverable

Source: BlueTech Insight Report - Alberta Oil Sands

Penn West Petroleum Ltd. Murphy Oil Company Ltd

SAGD

CSS

Water Use in the Alberta Oil Sands

SAGD Treatment Train Options

Makeup Water

Produced Water Treatment (Deoiling)

Skim Tank

Induced Gas Flotation

Depth Filter

D

Water Treatment (Conventional)

Warm Lime Softening (WLS)

Depth Filter

Weak Acid Cation
Softener

Water Treatment (Alternative)

Evaporator

Steam Generation

O₂ Environmental

GE Dominates the Evaporator Market in the Oil Sands

Aqua-Pure Ventures

- EnCana (now Cenovus) Foster Creek Site
- JACOS Hangingstone Pilot Evaporator

Aquatech

- Shell Orion Site (Shell is paying GE due to patent infringement)
- Recently awarded Pengrowth Contract

Veolia

- One commissioned and operating
- One pending startup and commissioning
- 2 in various stages of execution
- One in engineering phase

• **GE**

 19 Projects of various sizes including 27 evaporator units and 7 crystallizers

Key Takeaways

- SAGD is expected to become the dominant extraction method
- DRUM boilers are set to become the dominant means of generating steam for SAGD.
- Oil production is dependent upon steam production, which is dependent upon water treatment. No unnecessary risks to water treatment will be taken.
- There are unmet needs with no simple solution for water treatment.
- The water treatment technology customer is the Oil Company not a service provider.

Thank you for Attending! See you at a BlueTech Webinar in 2014

A recording & presentation slides will be sent in 3-4 business days

For more information to view PAST WEBINARS, or to sign up for the BlueTech NEWSLETTER visit: www.BlueTechResearch.com